Integral check. Is partial fractions the only way?












2












$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    3 hours ago










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    1 hour ago
















2












$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    3 hours ago










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    1 hour ago














2












2








2





$begingroup$


I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...










share|cite|improve this question











$endgroup$




I'm getting a different answer from wolfram and I have no idea where. I have to integrate:



$$int_0^1 frac{xdx}{(2x+1)^3}$$



Is partial fractions the only way?



So evaluating the fraction first:



$$frac{x}{(2x+1)^3} = frac{A}{2x+1} + frac{B}{(2x+1)^2} + frac{C}{(2x+1)^3}$$



$$x = A(2x+1)^2 + B(2x+1) + C$$



$$x = A(4x^2 + 4x + 1) + 2Bx + B + C$$



$$x = 4Ax^2 + 4Ax + A + 2Bx + B + C$$



$$x = x^2(4A) + x(4A+2B) + A + B + C$$



$4A = 0$ and $4A+2B = 1$ and $A + B + C = 0$ so $A = 0$ and $B=frac{1}{2}$ and $C = frac{-1}{2}$



Is the partial fraction part right?



So then I get:



$$int_0^1 frac{xdx}{(2x+1)^3} = int_0^1 frac{dx}{(2(2x+1)^2)} - int_0^1 frac{dx}{2(2x+1)^3}$$



for both, using $u = 2x+1$ and $frac{du}{dx} = 2$ and $du = 2dx$ and $frac{du}{2} = dx$,
$$frac{1}{4} int frac{du}{u^2} - frac{1}{4} int frac{du}{u^3}$$



$$ = [frac{1}{4} - u^{-1} - frac{1}{4} cdot frac{1}{-2} u^{-2} ]_1^3$$



I'm going the route of changing the limits to the new u and since $u = 2x+1$, when $x = 0, u = 1$ and when $x = 1, u = 3$. Is this the right path?



finally I get



$$[frac{-1}{4}u^{-1} + frac{1}{8}u^{-2} ]_1^3$$



I plug in numbers but I get a different answer than wolfram...







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 3 hours ago









Joshua Mundinger

2,5191028




2,5191028










asked 3 hours ago









Jwan622Jwan622

2,14111530




2,14111530












  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    3 hours ago










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    1 hour ago


















  • $begingroup$
    I can't see any mistake in your work. What's the answer given by wolfram?
    $endgroup$
    – Thomas Shelby
    3 hours ago










  • $begingroup$
    They have 1/18 as the answer @ThomasShelby
    $endgroup$
    – Jwan622
    1 hour ago
















$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
3 hours ago




$begingroup$
I can't see any mistake in your work. What's the answer given by wolfram?
$endgroup$
– Thomas Shelby
3 hours ago












$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
1 hour ago




$begingroup$
They have 1/18 as the answer @ThomasShelby
$endgroup$
– Jwan622
1 hour ago










4 Answers
4






active

oldest

votes


















4












$begingroup$

Hint: Substitute $x=tfrac12 u -tfrac12$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    You beat me to it.
    $endgroup$
    – randomgirl
    3 hours ago










  • $begingroup$
    If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
    $endgroup$
    – Jwan622
    59 mins ago



















2












$begingroup$

A much much easier way to solve it is by using integration by parts.



Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    $u$ but then $dv$?
    $endgroup$
    – manooooh
    3 hours ago










  • $begingroup$
    @manooooh What do you mean? I don't understand.
    $endgroup$
    – Haris Gusic
    3 hours ago










  • $begingroup$
    I am sorry, I understood that you used sub. My apologies.
    $endgroup$
    – manooooh
    2 hours ago



















2












$begingroup$

1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



3) Integrate to get



$$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$



    Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$ and use the general power rule for integrals:



    $$I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3120889%2fintegral-check-is-partial-fractions-the-only-way%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      Hint: Substitute $x=tfrac12 u -tfrac12$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        You beat me to it.
        $endgroup$
        – randomgirl
        3 hours ago










      • $begingroup$
        If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
        $endgroup$
        – Jwan622
        59 mins ago
















      4












      $begingroup$

      Hint: Substitute $x=tfrac12 u -tfrac12$






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        You beat me to it.
        $endgroup$
        – randomgirl
        3 hours ago










      • $begingroup$
        If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
        $endgroup$
        – Jwan622
        59 mins ago














      4












      4








      4





      $begingroup$

      Hint: Substitute $x=tfrac12 u -tfrac12$






      share|cite|improve this answer









      $endgroup$



      Hint: Substitute $x=tfrac12 u -tfrac12$







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 3 hours ago









      MPWMPW

      30.3k12157




      30.3k12157












      • $begingroup$
        You beat me to it.
        $endgroup$
        – randomgirl
        3 hours ago










      • $begingroup$
        If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
        $endgroup$
        – Jwan622
        59 mins ago


















      • $begingroup$
        You beat me to it.
        $endgroup$
        – randomgirl
        3 hours ago










      • $begingroup$
        If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
        $endgroup$
        – Jwan622
        59 mins ago
















      $begingroup$
      You beat me to it.
      $endgroup$
      – randomgirl
      3 hours ago




      $begingroup$
      You beat me to it.
      $endgroup$
      – randomgirl
      3 hours ago












      $begingroup$
      If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
      $endgroup$
      – Jwan622
      59 mins ago




      $begingroup$
      If I go your way, I wind up with $frac{1}{2} int frac{1}{u^2} - frac{1}{2} int frac{1}{u^3}$ which is different than what I have at some point. I can't see my error.
      $endgroup$
      – Jwan622
      59 mins ago











      2












      $begingroup$

      A much much easier way to solve it is by using integration by parts.



      Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        $u$ but then $dv$?
        $endgroup$
        – manooooh
        3 hours ago










      • $begingroup$
        @manooooh What do you mean? I don't understand.
        $endgroup$
        – Haris Gusic
        3 hours ago










      • $begingroup$
        I am sorry, I understood that you used sub. My apologies.
        $endgroup$
        – manooooh
        2 hours ago
















      2












      $begingroup$

      A much much easier way to solve it is by using integration by parts.



      Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






      share|cite|improve this answer









      $endgroup$













      • $begingroup$
        $u$ but then $dv$?
        $endgroup$
        – manooooh
        3 hours ago










      • $begingroup$
        @manooooh What do you mean? I don't understand.
        $endgroup$
        – Haris Gusic
        3 hours ago










      • $begingroup$
        I am sorry, I understood that you used sub. My apologies.
        $endgroup$
        – manooooh
        2 hours ago














      2












      2








      2





      $begingroup$

      A much much easier way to solve it is by using integration by parts.



      Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.






      share|cite|improve this answer









      $endgroup$



      A much much easier way to solve it is by using integration by parts.



      Hint: Take $u=x$, $dv = frac{dx}{(2x+1)^3}$.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered 3 hours ago









      Haris GusicHaris Gusic

      960116




      960116












      • $begingroup$
        $u$ but then $dv$?
        $endgroup$
        – manooooh
        3 hours ago










      • $begingroup$
        @manooooh What do you mean? I don't understand.
        $endgroup$
        – Haris Gusic
        3 hours ago










      • $begingroup$
        I am sorry, I understood that you used sub. My apologies.
        $endgroup$
        – manooooh
        2 hours ago


















      • $begingroup$
        $u$ but then $dv$?
        $endgroup$
        – manooooh
        3 hours ago










      • $begingroup$
        @manooooh What do you mean? I don't understand.
        $endgroup$
        – Haris Gusic
        3 hours ago










      • $begingroup$
        I am sorry, I understood that you used sub. My apologies.
        $endgroup$
        – manooooh
        2 hours ago
















      $begingroup$
      $u$ but then $dv$?
      $endgroup$
      – manooooh
      3 hours ago




      $begingroup$
      $u$ but then $dv$?
      $endgroup$
      – manooooh
      3 hours ago












      $begingroup$
      @manooooh What do you mean? I don't understand.
      $endgroup$
      – Haris Gusic
      3 hours ago




      $begingroup$
      @manooooh What do you mean? I don't understand.
      $endgroup$
      – Haris Gusic
      3 hours ago












      $begingroup$
      I am sorry, I understood that you used sub. My apologies.
      $endgroup$
      – manooooh
      2 hours ago




      $begingroup$
      I am sorry, I understood that you used sub. My apologies.
      $endgroup$
      – manooooh
      2 hours ago











      2












      $begingroup$

      1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



      2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



      3) Integrate to get



      $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



        2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



        3) Integrate to get



        $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



          2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



          3) Integrate to get



          $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$






          share|cite|improve this answer









          $endgroup$



          1) Observe: $$x= frac 12 times left ( (2x + 1) -1right).$$



          2) Use this to obtain $$frac{x}{(2x+1)^3} = frac{1}{2} times frac{1}{(2x+1)^2} - frac 12 times frac{1}{(2x+1)^3}.$$



          3) Integrate to get



          $$ int frac{x}{(2x+1)^3} dx = -frac{1}{4} (2x+1)^{-1} + frac{1}{8} (2x+1)^{-2}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          FnacoolFnacool

          5,031511




          5,031511























              0












              $begingroup$

              $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$



              Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$ and use the general power rule for integrals:



              $$I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$



                Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$ and use the general power rule for integrals:



                $$I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$



                  Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$ and use the general power rule for integrals:



                  $$I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$






                  share|cite|improve this answer









                  $endgroup$



                  $$I=int_{0}^{1}dfrac{x mathrm dx}{(2x+1)^3}implies 2I=int_{0}^{1}dfrac{2x+1-1}{(2x+1)^3}mathrm dx$$ $$2I=int_{0}^{1}biggl[dfrac{1}{(2x+1)^2}-dfrac{1}{(2x+1)^3}biggr] mathrm dx $$



                  Make the substitution $begin{bmatrix}t \ mathrm dt end{bmatrix}=begin{bmatrix}2x+1 \ 2mathrm dxend{bmatrix}$ and use the general power rule for integrals:



                  $$I=dfrac{1}{4}biggl[-dfrac{1}{t}+dfrac{1}{2t^2}biggr]_{1}^{3}=dfrac{1}{18}$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered 12 mins ago









                  Paras KhoslaParas Khosla

                  733213




                  733213






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3120889%2fintegral-check-is-partial-fractions-the-only-way%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Fluorita

                      Hulsita

                      Península de Txukotka