This page is only for reference, If you need detailed information, please check here
This page is only for reference, If you need detailed information, please check here
2
$begingroup$
The unusual thing about this number is that the most common phrases that use it are wrong. That is, while someone may often say there are X As in a B, the actual number is not X. What number am I thinking of? Hint 1: "There are X As in a B", but almost every B contains at least X + 2 As. Hint 2: "There are X Cs in a D" but a D always contains between X + 0.1 and X + 0.3 Cs
number-property
share | improve this question
asked 2 hours ago
Rupert Morrish Rupert Morrish
3,643 1 9 34
$endgro...
Aquesta pàgina és un índex d'acrònims, abreviatures, símbols i similars amb diversos significats. Si un enllaç intern us ha portat fins ací podeu tornar enrere per arreglar-lo i fer-lo enllaçar a la pàgina més adient. NLL té els següents significats: North London Line , línia de ferrocarril dels suburbis del nord de Londres (Regne Unit) Línia del Límit del Nord (del seu nom en anglès Northern Limit Line ), frontera marítima entre Corea del Nord i Corea del Sud, establerta el 1953 per l'ONU, font de l'actual conflicte marítim intercoreà National Lacrosse League , lliga professional de lacrosse d'Amèrica del Nord nll també és el codi ISO 639-3 del nihali , llengua parlada a l'Índia This page is only for reference, If you need detailed information, please check here
3
1
$begingroup$
I must have read and re-read introductory differential geometry texts ten times over the past few years, but the "torsion free" condition remains completely unintuitive to me. The aim of this question is to try to finally put this uncomfortable condition to rest. Ehresmann Connections Ehresmann connections are a very intuitive way to define a connection on any fiber bundle. Namely, an Ehressmann connection on a fiber bundle $Erightarrow M$ is just a choice of a complementary subbundle to $ker(TE rightarrow TM)$ inside of $TE$ . This choice is also called a horizontal bundle. If we are dealing with a linear connection, then $E=TM$ , and the Ehresmann connection is a subbundle of $TTM$ . This makes intuitive sense -- basically it's saying that for each point in $TM$ it tells ...