Having trouble computing $int_3^5frac{t}{1+0.1t} dt $












1












$begingroup$


$$int_3^5frac{t}{1+0.1t} dt $$



For some reason this is equal to:
$$frac{1}{0.1left(2 - left(frac{frac{1}{0.1}}{ln1.5 - ln1.3}right)right)}$$



I have no idea how to reduce to that.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If you let $x=1+0.1t$, then $t=10x-10$...
    $endgroup$
    – Eleven-Eleven
    15 hours ago












  • $begingroup$
    Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    15 hours ago










  • $begingroup$
    This is not an improper integral, by the way. So, I removed that tag.
    $endgroup$
    – Mike R.
    15 hours ago


















1












$begingroup$


$$int_3^5frac{t}{1+0.1t} dt $$



For some reason this is equal to:
$$frac{1}{0.1left(2 - left(frac{frac{1}{0.1}}{ln1.5 - ln1.3}right)right)}$$



I have no idea how to reduce to that.










share|cite|improve this question











$endgroup$












  • $begingroup$
    If you let $x=1+0.1t$, then $t=10x-10$...
    $endgroup$
    – Eleven-Eleven
    15 hours ago












  • $begingroup$
    Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    15 hours ago










  • $begingroup$
    This is not an improper integral, by the way. So, I removed that tag.
    $endgroup$
    – Mike R.
    15 hours ago
















1












1








1





$begingroup$


$$int_3^5frac{t}{1+0.1t} dt $$



For some reason this is equal to:
$$frac{1}{0.1left(2 - left(frac{frac{1}{0.1}}{ln1.5 - ln1.3}right)right)}$$



I have no idea how to reduce to that.










share|cite|improve this question











$endgroup$




$$int_3^5frac{t}{1+0.1t} dt $$



For some reason this is equal to:
$$frac{1}{0.1left(2 - left(frac{frac{1}{0.1}}{ln1.5 - ln1.3}right)right)}$$



I have no idea how to reduce to that.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 5 hours ago









Robert Howard

2,0101825




2,0101825










asked 15 hours ago









ximxim

516




516












  • $begingroup$
    If you let $x=1+0.1t$, then $t=10x-10$...
    $endgroup$
    – Eleven-Eleven
    15 hours ago












  • $begingroup$
    Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    15 hours ago










  • $begingroup$
    This is not an improper integral, by the way. So, I removed that tag.
    $endgroup$
    – Mike R.
    15 hours ago




















  • $begingroup$
    If you let $x=1+0.1t$, then $t=10x-10$...
    $endgroup$
    – Eleven-Eleven
    15 hours ago












  • $begingroup$
    Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
    $endgroup$
    – Dr. Sonnhard Graubner
    15 hours ago










  • $begingroup$
    This is not an improper integral, by the way. So, I removed that tag.
    $endgroup$
    – Mike R.
    15 hours ago


















$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
15 hours ago






$begingroup$
If you let $x=1+0.1t$, then $t=10x-10$...
$endgroup$
– Eleven-Eleven
15 hours ago














$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
15 hours ago




$begingroup$
Do you mean $$int_{3}^{5}frac{t}{1+frac{1}{10}t}dt$$?
$endgroup$
– Dr. Sonnhard Graubner
15 hours ago












$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Mike R.
15 hours ago






$begingroup$
This is not an improper integral, by the way. So, I removed that tag.
$endgroup$
– Mike R.
15 hours ago












2 Answers
2






active

oldest

votes


















6












$begingroup$

Hint:



$$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    $$
    frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
    frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
    10left(frac{-10+10+x}{10+x}right)=
    10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
    10left(-frac{10}{10+x}+1right)=\
    10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
    $$




    $$
    intleft(10-frac{100}{10+x}right),dx=
    10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
    10x-100intfrac{1}{10+x},d(10+x)=
    10x-100ln{|10+x|}+C.
    $$



    $$
    int_3^5frac{t}{1+0.1t},dt=
    bigg[10t-100ln{|10+t|}bigg]_3^5=\
    50-100ln{15}-(30-100ln{13})=
    20-100ln{15}+100ln{13}=\
    20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
    $$



    The answer you gave is equivalent to what I got:
    $$
    frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
    10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
    20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
    20-100ln{frac{15}{13}}.
    $$





    share|cite|improve this answer











    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117611%2fhaving-trouble-computing-int-35-fract10-1t-dt%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      Hint:



      $$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$






      share|cite|improve this answer









      $endgroup$


















        6












        $begingroup$

        Hint:



        $$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$






        share|cite|improve this answer









        $endgroup$
















          6












          6








          6





          $begingroup$

          Hint:



          $$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$






          share|cite|improve this answer









          $endgroup$



          Hint:



          $$frac{t}{1+0.1t} = frac{10cdot(1+0.1t) - 10}{1+0.1t} = 10 - frac{10}{1+0.1t}$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 15 hours ago









          5xum5xum

          90.9k394161




          90.9k394161























              3












              $begingroup$

              $$
              frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
              frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
              10left(frac{-10+10+x}{10+x}right)=
              10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
              10left(-frac{10}{10+x}+1right)=\
              10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
              $$




              $$
              intleft(10-frac{100}{10+x}right),dx=
              10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
              10x-100intfrac{1}{10+x},d(10+x)=
              10x-100ln{|10+x|}+C.
              $$



              $$
              int_3^5frac{t}{1+0.1t},dt=
              bigg[10t-100ln{|10+t|}bigg]_3^5=\
              50-100ln{15}-(30-100ln{13})=
              20-100ln{15}+100ln{13}=\
              20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
              $$



              The answer you gave is equivalent to what I got:
              $$
              frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
              10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
              20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
              20-100ln{frac{15}{13}}.
              $$





              share|cite|improve this answer











              $endgroup$


















                3












                $begingroup$

                $$
                frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
                frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
                10left(frac{-10+10+x}{10+x}right)=
                10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
                10left(-frac{10}{10+x}+1right)=\
                10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
                $$




                $$
                intleft(10-frac{100}{10+x}right),dx=
                10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
                10x-100intfrac{1}{10+x},d(10+x)=
                10x-100ln{|10+x|}+C.
                $$



                $$
                int_3^5frac{t}{1+0.1t},dt=
                bigg[10t-100ln{|10+t|}bigg]_3^5=\
                50-100ln{15}-(30-100ln{13})=
                20-100ln{15}+100ln{13}=\
                20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
                $$



                The answer you gave is equivalent to what I got:
                $$
                frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
                10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
                20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
                20-100ln{frac{15}{13}}.
                $$





                share|cite|improve this answer











                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  $$
                  frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
                  frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
                  10left(frac{-10+10+x}{10+x}right)=
                  10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
                  10left(-frac{10}{10+x}+1right)=\
                  10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
                  $$




                  $$
                  intleft(10-frac{100}{10+x}right),dx=
                  10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
                  10x-100intfrac{1}{10+x},d(10+x)=
                  10x-100ln{|10+x|}+C.
                  $$



                  $$
                  int_3^5frac{t}{1+0.1t},dt=
                  bigg[10t-100ln{|10+t|}bigg]_3^5=\
                  50-100ln{15}-(30-100ln{13})=
                  20-100ln{15}+100ln{13}=\
                  20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
                  $$



                  The answer you gave is equivalent to what I got:
                  $$
                  frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
                  10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
                  20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
                  20-100ln{frac{15}{13}}.
                  $$





                  share|cite|improve this answer











                  $endgroup$



                  $$
                  frac{x}{1+0.1x}=frac{x}{1+0.1x}cdotfrac{10}{10}=
                  frac{10x}{10+x}=10left(frac{x}{10+x}right)=\
                  10left(frac{-10+10+x}{10+x}right)=
                  10left(frac{-10}{10+x}+frac{10+x}{10+x}right)=
                  10left(-frac{10}{10+x}+1right)=\
                  10left(1-frac{10}{10+x}right)=10-frac{100}{10+x}.
                  $$




                  $$
                  intleft(10-frac{100}{10+x}right),dx=
                  10int,dx-100intfrac{1}{10+x}frac{d}{dx}(10+x),dx=\
                  10x-100intfrac{1}{10+x},d(10+x)=
                  10x-100ln{|10+x|}+C.
                  $$



                  $$
                  int_3^5frac{t}{1+0.1t},dt=
                  bigg[10t-100ln{|10+t|}bigg]_3^5=\
                  50-100ln{15}-(30-100ln{13})=
                  20-100ln{15}+100ln{13}=\
                  20-100(ln{15}-ln{13})=20-100ln{frac{15}{13}}.
                  $$



                  The answer you gave is equivalent to what I got:
                  $$
                  frac{1}{0.1}left(2-frac{1}{0.1}left[ln{1.5}-ln{1.3}right]right)=
                  10left(2-10left[ln{frac{15}{10}}-ln{frac{13}{10}}right]right)=\
                  20-100ln{left(frac{15}{10}divfrac{13}{10}right)}=
                  20-100ln{frac{15}{13}}.
                  $$






                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 14 hours ago

























                  answered 15 hours ago









                  Mike R.Mike R.

                  2,453316




                  2,453316






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117611%2fhaving-trouble-computing-int-35-fract10-1t-dt%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Fluorita

                      Hulsita

                      Península de Txukotka